
University of Sofia
IRC–CoSiM Project

Second IRC–CoSiM Workshop, Gyuletchitsa 15–18 October 2009

Performance evaluation and
optimisation of scientific codes

Hristo Iliev
Monte Carlo Research Group
hristo<at>phys.uni-sofia.bg

Second IRC–CoSiM Workshop, Gyuletchitsa 15–18 October 2009

1.Overview
2.Performance estimation...
3.... and optimisation
4.Simple optimisations
5.Advanced techniques
6.Case study

2

Second IRC–CoSiM Workshop, Gyuletchitsa 15–18 October 2009

Science vs. desktop

• Desktop apps are about productivity
‣Funny interactive GUIs
‣Document processing, WEB surfing
‣Complex data structures & complex algorithms but not

so many data (~ MiBs)
‣Better ways to manage and represent data

• Scientific apps are about performance
‣Scary configuration files
‣Batch execution
‣Simple data structures & simple algorithms* but HUGE

amount of data (~ TiBs)
‣Better ways to process the data

3

* but not necessarily simple in implementation, esp. numerical algorithms

Second IRC–CoSiM Workshop, Gyuletchitsa 15–18 October 2009

Performance

• Work per unit time
‣Measured in floating point operations per second

(flops), not in Watts
‣Other units for specific applications:

- triangles/vertices per second (GPUs)
- frames per second (video processing)
- MiB/GiB per second (data processing)
- simulations per day
- etc.

• Benchmarks
‣Synthetic tests that measure specific (sub-)system’s

performance in a comparative way
‣“Mine FPU is better than yours”

4

Second IRC–CoSiM Workshop, Gyuletchitsa 15–18 October 2009

1.Overview
2.Performance estimation...
3.... and optimisation
4.Simple optimisations
5.Advanced techniques
6.Case study

5

Second IRC–CoSiM Workshop, Gyuletchitsa 15–18 October 2009

LINPACK

• Standard linear algebra benchmark
‣Solves dense A·x = b in single or double precision

floating point numbers
‣Matrix diagonalisation and matrix-vector multiplication
‣⅔·N3 + 2·N2 operations where N = dim(A)
‣Rpeak – peak (theoretical) performance

- Intel Xeon E5420: Rpeak = 4 cores·4 flops/cycle·2.5 Gcycles/sec = 40 Gflops

‣Rmax – sustained performance
‣Nmax – dim(A) to achieve Rmax

• HPL
‣Parallel implementation of LINPACK
‣Top500.org

6

Second IRC–CoSiM Workshop, Gyuletchitsa 15–18 October 2009

LINPACK drawbacks

• Only simple vector math operations
• Results highly dependent on dim(A)
• No transcendental operations used
• Beware!
‣High LINPACK score doesn’t always mean high overall

computing speed
‣Computer vendors often abuse and/or tweak benchmark

results
‣Example: nVidia Tesla C1060 GPGPU

- 933 Gflops (peak) for IEEE 754 single precision numbers
- 78 Gflops (peak) for IEEE 754 double precision numbers (highly understated in

press releases)
- Thank goodness many scientific codes can run in single precision

7

Second IRC–CoSiM Workshop, Gyuletchitsa 15–18 October 2009

Program scaling

• Performance vs. problem size
‣Highly architecture dependent
‣Small problems fit in CPU cache (L2 or L3)
‣Memory is the bottleneck at large problem sizes

• Performance vs. CPU count
‣Amdahl’s law

• Good to know your program’s scaling
‣Test runs with varying problem size
‣Vary the CPU count (for parallel apps only)
‣Plot it to get the picture!
‣Choose wisely!

8

Second IRC–CoSiM Workshop, Gyuletchitsa 15–18 October 2009

Amdahl’s law

• Limits the parallel speed-up

• Speed-up = 1/(s+p/N) = N/[1+(N-1)s]
• Maximum speedup = 1/s
‣More CPUs adds to s when global synchronisation is

involved
9

1 CPU N CPUs

Serial
Parallel

N times faster
p

s

p/N

s

Second IRC–CoSiM Workshop, Gyuletchitsa 15–18 October 2009

The economist view

• Price for running on N CPUs
‣Price = TCPU·$/hr
‣TCPU = N·Trun

‣Trun = T1·[1+(N-1)s]/N
‣Price = Price1·[1+(N-1)s] ≥ Price1

• Best scenario
‣s = 0
‣Price stays the same, but runtime is N times shorter

• Worst scenario
‣s = 1
‣Price is N times higher for no gain in runtime

• Usually we are somewhere in between
10

Second IRC–CoSiM Workshop, Gyuletchitsa 15–18 October 2009

1.Overview
2.Performance estimation...
3.... and optimisation
4.Simple optimisations
5.Advanced techniques
6.Case study

11

Second IRC–CoSiM Workshop, Gyuletchitsa 15–18 October 2009

Optimisation

• Improving program’s performance on the
same hardware

• No programming involved
‣Better compiler
‣Better libraries
‣Reduce problem size (better/simpler models)

• Programming involved
‣Better algorithms
‣Different data representation
‣Different data alignment
‣Remove redundant code

12

Second IRC–CoSiM Workshop, Gyuletchitsa 15–18 October 2009

The big question

• Is it worth?
‣Faster programs vs. longer life when you’re on your own
‣ Investment vs. benefit

13

0

25

50

75

100

Before After

Not optimisable
Optimisable

10x faster!

Overall speed-up: 1.1x

NOT WORTH!

Second IRC–CoSiM Workshop, Gyuletchitsa 15–18 October 2009

1.Overview
2.Performance estimation...
3.... and optimisation
4.Simple optimisations
5.Advanced techniques
6.Case study

14

Second IRC–CoSiM Workshop, Gyuletchitsa 15–18 October 2009

The simplest one

If it works, don’t mess with it!

15

Second IRC–CoSiM Workshop, Gyuletchitsa 15–18 October 2009

Change the compiler

• Different vendors
(a.k.a. “anything but GCC”)

• Newer versions (sometimes) perform better

16

gfortran 4.2.4 (-O3 -msse3 -mfpmath=sse -march=nocona -static)

ifort 11.1 (-O3 -xSSE4.1 -static)

sunf90 8.4 (-xO3 -xarch=sse4_1 -xcache=32/64/8:6144/64/24 \
 -xchip=penryn -dalign -fsimple=2 -fns=yes -ftrap=common -xlibmil \
 -xlibmopt -nofstore -xregs=frameptr -xvector=simd -Bstatic)

1.00x
1.67x

1.43x

ifort 10.0 (-O3 -xT -ipo -static)

ifort 11.0 (-O3 -xSSE4.1 -ipo -static)

ifort 11.1 (-O3 -xSSE4.1 -ipo -static)

1.00x
1.13x
1.13x

Second IRC–CoSiM Workshop, Gyuletchitsa 15–18 October 2009

Know your options

• Many compiler options affect performance,
but most require programmer’s knowledge
‣Use register arguments (breaks profiling)
‣Use function inlining (ditto)
‣Static linkage gives a few % faster code
‣Specify correct cache properties (e.g. to Sun Studio)
‣Enable omission of frame pointers (breaks profiling)
‣Enable extended processor instructions
‣Enable vectorisation (3DNow!, SSE2, SSE3, etc.)

• Beware: Optimisations can break
unstable (numerical) codes!!!

17

Second IRC–CoSiM Workshop, Gyuletchitsa 15–18 October 2009

Link with better libs

• Vendor libraries are usually better than
generic versions

• Intel
‣ Intel Performance Primitives (vector ops)
‣ Intel Math Kernel Library (BLAS, LAPACK, FFT)

• Sun
‣Sun Performance Library

• Generic (but still fast)
‣ATLAS
‣FFTW

• Most software automatically recognises
and uses vendor libraries

18

Second IRC–CoSiM Workshop, Gyuletchitsa 15–18 October 2009

1.Overview
2.Performance estimation...
3.... and optimisation
4.Simple optimisations
5.Advanced techniques
6.Case study

19

Second IRC–CoSiM Workshop, Gyuletchitsa 15–18 October 2009

Profiling

• Profilers profile your instrumented code
‣Can include statistical sampling
‣ Instruction pointer sampling (what’s running now?)
‣Call stack recording (who called who?)
‣Much more informative when debug info is present

(gives familiar function names in the output rather than
obscure addresses)

• Requires compiler support
‣GCC: -p (prof) or -pg (gprof)
‣Sun: -p (prof) or -xpg (gprof)
‣ Intel: -p (gprof)

• Beware of the optimisation!

20

Second IRC–CoSiM Workshop, Gyuletchitsa 15–18 October 2009

Profiling workflow

21

Compile myprog with -pg

Instrumented executable myprog

Run myprog

gmon.out

gprof myprog gmon.out

Profile

Do not interrupt
program execution:
gmon.out is written

at the very end!

Second IRC–CoSiM Workshop, Gyuletchitsa 15–18 October 2009

gprof output

22

• Flat profile
‣Total time spent in each function
‣Number of calls to each function
‣Time per call
‣Self times

• Call graph profile
‣Time spent in each child function
‣Number of calls to each child from the current one
‣Total number of calls to each child

• Compiler optimisations and function
inlining may result in weird output!

Second IRC–CoSiM Workshop, Gyuletchitsa 15–18 October 2009

Alternatives to gprof

• Hey, it’s XXI century. We’ve got Windows,
and Macs, and Java, and stuff!

23

Second IRC–CoSiM Workshop, Gyuletchitsa 15–18 October 2009

Sun Studio

• Free C/C++/Fortran IDE from Sun
‣Written in Java, of course, thus kind of slow ;)

• Available for Solaris and Linux
• GUI plug-ins that wrap command-line tools
• Project D-Light
‣ Interface to the D-Trace toolkit
‣Omnipotent system wide profiling
‣Scripts written in D
‣Many Solaris components provide D-Trace hooks

• collect/analyzer
‣gprof on steroids
‣Can trace threads, synchronisation and MPI calls

24

Second IRC–CoSiM Workshop, Gyuletchitsa 15–18 October 2009

Basic performance principles

• Data locality
‣Spatial – group related data structures together in

memory, do not scatter them
‣Temporal – use variables as soon as possible after their

value is computed

• Streams are good
‣Streaming data is a good candidate for vectorisation
‣Streams play nice with prefetching

• Simple data structures
‣Use pointers only when necessary
‣Pointers confuse code optimisers

• It’s all about the loops

25

Second IRC–CoSiM Workshop, Gyuletchitsa 15–18 October 2009

Data locality

• CPU cache is copied from/to memory in
“lines” (64 bytes in modern x86)
‣Spatial locality maximises the chance that related data

parts are in the same cache line

• Each CPU has a limited number of very
fast registers
‣Temporal locality maximises the chance that variables

stay in CPU registers and not in main memory

26

Second IRC–CoSiM Workshop, Gyuletchitsa 15–18 October 2009

Nested loops

• When nesting loops make the one with
most iterations the innermost

• Mind how multidimensional arrays are laid
in memory (spatial locality!)

27

DO i = 1,100000
 DO j = 1,10
 ...
 END DO !j
END DO !i

bad:

DO i = 1,10
 DO j = 1,100000
 ...
 END DO !j
END DO !i

good:

DO i = 1,100
 DO j = 1,100
 a(i,j) = ...
 END DO !j
END DO !i

bad:

DO j = 1,100
 DO i = 1,100
 a(i,j) = ...
 END DO !i
END DO !j

good:

Second IRC–CoSiM Workshop, Gyuletchitsa 15–18 October 2009

Innermost loops

• Put as much work as possible in innermost
loops

• Small innermost loops (2 to 4 steps) can be
unrolled:

• Most compilers automatically unroll loops
in higher optimisation levels

• Small loops with no interdependencies can
be vectorised – better don’t unroll by hand

28

DO d = 1,3
 R(d,num) = ...
END DO

R(1,num) = ...
R(2,num) = ...
R(3,num) = ...

Second IRC–CoSiM Workshop, Gyuletchitsa 15–18 October 2009

Conditionals

• Conditionals are enemy to the performance
• Conditional statements inside tight loops

are performance killers
• Conditionals on global flags inside loops

are insanity

29

DO i = 1,1000
 IF (flag) THEN
 statements 1
 ELSE
 statements 2
 END IF
END DO

IF (flag) THEN
 DO i = 1,1000
 statements 1
 END DO
ELSE
 DO i = 1,1000
 statements 2
 END DO
END IF

Second IRC–CoSiM Workshop, Gyuletchitsa 15–18 October 2009

Cache trashing

• Simultaneous access to memory blocks
that map on the same cache line

‣Causes continuous cache reloads from main memory
‣Modern CPUs have highly associative L2 and L3 caches

to prevent most cache trashes

• Artificial padding can help reduce trashing

30

A(:) = B(:) + C(:)

REAL A(1024)
REAL B(1024)
REAL C(1024)

REAL A(1024)
REAL PADA(16)
REAL B(1024)
REAL PADB(16)
REAL C(1024)

Second IRC–CoSiM Workshop, Gyuletchitsa 15–18 October 2009

An “obvious” one

• Skip unnecessary data initialisation
‣No need to clear variables that are assigned to later
‣Split loops where variable values are accumulated in

each step

• Initialisation of large arrays on each
computation step can be very time
consuming!

31

a = 0.0
...
DO i = 1,1000
 a = a + i**2
END DO

a = 1**2
DO i = 2,1000
 a = a + i**2
END DO

Second IRC–CoSiM Workshop, Gyuletchitsa 15–18 October 2009

1.Overview
2.Performance estimation...
3.... and optimisation
4.Simple optimisations
5.Advanced techniques
6.Case study

32

Second IRC–CoSiM Workshop, Gyuletchitsa 15–18 October 2009

BOZA

• Molecular Dynamics code for simulations
of carbon and carbon–metal system

• Brenner’s potential – naive O(N3) alogrithm
• Optimisations
‣Linked cells + Verlet neighbour list
‣Removed unnecessary initialisations of large arrays
‣Reduced the number of conditionals
‣Reordered some loops
‣Better compiler options
‣Better compilers

• Net result: ~40x speed-up

33

Second IRC–CoSiM Workshop, Gyuletchitsa 15–18 October 2009

Acknowledgements

The author acknowledges the financial
support of the National Scientific Research
Fund under contract DO-02-136/2008
(IRC-CoSiM project).

34

Second IRC–CoSiM Workshop, Gyuletchitsa 15–18 October 2009

Thank you for your attention
and

have a pleasant dinner time!

35

