IRC-CoSiM Project

University of Sofia o

Performance evaluation and
optimisation of scientific codes

Hristo lliev
Monte Carlo Research Group
hristo<at>phys.uni-sofia.bg

Second IRC-CoSiM Workshop, Gyuletchitsa 15-18 October 2009

RG=

1.0verview

2.Performance estimation...
3.... and optimisation
4.Simple optimisations
5.Advanced technigues
6.Case study

Second IRC-CoSiM Workshop, Gyuletchitsa 15-18 October 2009

RC Science vs. desktop

® Desktop apps are about productivity
» Funny interactive GUIs
» Document processing, WEB surfing
» Complex data structures & complex algorithms but not
so many data (~ MiBs)
» Better ways to manage and represent data

® Scientific apps are about performance
» Scary configuration files
» Batch execution
» Simple data structures & simple algorithms™* but HUGE
amount of data (~ TiBs)
» Better ways to process the data

* but not necessarily simple in implementation, esp. numerical algorithms

Second IRC-CoSiM Workshop, Gyuletchitsa 15-18 October 2009

RG| Performance

® \Work per unit time

» Measured in floating point operations per second
(flops), not in Watts

» Other units for specific applications:

- triangles/vertices per second (GPUs)
- frames per second (video processing)
- MiB/GiB per second (data processing)
- simulations per day

- etc.

® Benchmarks

» Synthetic tests that measure specific (sub-)system’s
performance in a comparative way
» “Mine FPU is better than yours”

Second IRC-CoSiM Workshop, Gyuletchitsa 15-18 October 2009

RG=

1.0verview

2.Performance estimation...
3.... and optimisation
4.Simple optimisations
5.Advanced technigues
6.Case study

Second IRC-CoSiM Workshop, Gyuletchitsa 15-18 October 2009

RGs LINPACK

e Standard linear algebra benchmark

» Solves dense A-x = b in single or double precision
floating point numbers

» Matrix diagonalisation and matrix-vector multiplication

» 75-N° + 2 - N2 operations where N = dim(A)

» Rpeak — peak (theoretical) performance
- Intel Xeon E5420: Rpeak = 4 cores - 4 flops/cycle - 2.5 Geycles/sec = 40 Gflops

» Rmax — sustained performance
» Nmax — dim(A) to achieve Rmax

® HPL

» Parallel implementation of LINPACK
» Top500.0rg

Second IRC-CoSiM Workshop, Gyuletchitsa 15-18 October 2009

RG LINPACK drawbacks

® Only simple vector math operations
® Results highly dependent on dim(A)

® No transcendental operations used

® Beware!

» High LINPACK score doesn’t always mean high overall
computing speed

» Computer vendors often abuse and/or tweak benchmark
results

» Example: nVidia Tesla C1060 GPGPU

- 933 Gflops (peak) for IEEE 754 single precision numbers

- 78 Gflops (peak) for IEEE 754 double precision numbers (highly understated in
press releases)

- Thank goodness many scientific codes can run in single precision

Second IRC-CoSiM Workshop, Gyuletchitsa 15-18 October 2009 7

RG Program scaling

® Performance vs. problem size

» Highly architecture dependent
» Small problems fit in CPU cache (L2 or L3)
» Memory is the bottleneck at large problem sizes

® Performance vs. CPU count
» Amdahl’s law

® Good to know your program’s scaling
» Test runs with varying problem size
» Vary the CPU count (for parallel apps only)
» Plot it to get the picture!
» Choose wisely!

Second IRC-CoSiM Workshop, Gyuletchitsa 15-18 October 2009

RG Amdahl’s law

® | imits the parallel speed-up

™ Parallel
W Serial

N times faster

| CPU N CPUs

® Speed-up = 1/(s+p/N) = N/[1+(N-1)s]

® Maximum speedup = 1/s

» More CPUs adds to s when global synchronisation is
involved

Second IRC-CoSiM Workshop, Gyuletchitsa 15-18 October 2009

RG] The economist view

® Price for running on N CPUs

» Price = Tcpu - $/hr

4 TCPU =N- Trun

» Trun = T1- [1 +(N-1)S]/N

» Price = Price1 - [1+(N-1)s] = Price+
® Best scenario

»ps=0

» Price stays the same, but runtime is N times shorter
® \Norst scenario

ps =1

» Price is N times higher for no gain in runtime

® Usually we are somewhere in between

Second IRC-CoSiM Workshop, Gyuletchitsa 15-18 October 2009

RG=

1.0verview

2.Performance estimation...
3.... and optimisation
4.Simple optimisations
5.Advanced technigues
6.Case study

Second IRC-CoSiM Workshop, Gyuletchitsa 15-18 October 2009 I

RGs Optimisation

® Improving program’s performance on the
same hardware

® No programming involved
» Better compiler
» Better libraries
» Reduce problem size (better/simpler models)

® Programming involved
» Better algorithms
» Different data representation
» Different data alignment
» Remove redundant code

Second IRC-CoSiM Workshop, Gyuletchitsa 15-18 October 2009

RG= The big question

® |s it worth?

» Faster programs vs. longer life when you’re on your own

» Investment vs. benefit B Optimisable

I Not optimisable

100 10x faster!

75

50

25

Before After
Overall speed-up: 1.1x

Second IRC-CoSiM Workshop, Gyuletchitsa 15-18 October 2009

RG=

1.0verview

2.Performance estimation...
3.... and optimisation
4.Simple optimisations
5.Advanced technigues
6.Case study

Second IRC-CoSiM Workshop, Gyuletchitsa 15-18 October 2009

The simplest one

If it works, don’t mess with it!

Second IRC-CoSiM Workshop, Gyuletchitsa 15-18 October 2009

RG

Change the compiler

® Different vendors
(a.k.a. “anything but GCC”)

gfortran 4.2.4 (-O3 -msse3 -mfpmath=sse -march=nocona -static)

ifort | |.] (-O3 -xSSE4.1 -static)

sunf90 8.4 (-xO3 -xarch=sse4_| -xcache=32/64/8:6144/64/24 \
-xchip=penryn -dalign -fsimple=2 -fns=yes -ftrap=common -xlibmil \
-xlibmopt -nofstore -xregs=frameptr -xvector=simd -Bstatic)

| .00x

Q1673

| .43x

® Newer versions (sometimes) perform better

ifort 10.0 (-O3 -xT -ipo -static)

ifort | 1.0 (-O3 -xSSE4.1 -ipo -static)

ifort | |.| (-O3 -xSSE4.1 -ipo -static)

Second IRC-CoSiM Workshop, Gyuletchitsa 15-18 October 2009

| .00x

|.13x

|.13x

RGs Know your options

® Many compiler options affect performance,

but most require programmer’s knowledge
» Use register arguments (breaks profiling)

» Use function inlining (ditto)

» Static linkage gives a few % faster code

» Specify correct cache properties (e.g. to Sun Studio)

» Enable omission of frame pointers (breaks profiling)

» Enable extended processor instructions
» Enable vectorisation (3DNow!, SSE2, SSES3, etc.)

® Beware: Optimisations can break
unstable (hnumerical) codes!!!

Second IRC-CoSiM Workshop, Gyuletchitsa 15-18 October 2009 |7

RC= Link with better libs

® \/endor libraries are usually better than
generic versions

® |ntel

» Intel Performance Primitives (vector ops)
» Intel Math Kernel Library (BLAS, LAPACK, FFT)

® Sun
» Sun Performance Library

® (Generic (but still fast)
» ATLAS
» FFTW

® Most software automatically recognises
and uses vendor libraries

Second IRC-CoSiM Workshop, Gyuletchitsa 15-18 October 2009 |18

RG=

1.0verview

2.Performance estimation...
3.... and optimisation
4.Simple optimisations
5.Advanced technigues
6.Case study

Second IRC-CoSiM Workshop, Gyuletchitsa 15-18 October 2009 19

G Profiling

® Profilers profile your instrumented code
» Can include statistical sampling
» Instruction pointer sampling (what’s running now?)
» Call stack recording (who called who?)
» Much more informative when debug info is present
(gives familiar function names in the output rather than
obscure addresses)

® Requires compiler support

» GCC: -p (prof) or -pg (gprof)
» Sun: -p (prof) or -xpg (gprof)
» Intel: - p (gprof)

® Beware of the optimisation!

Second IRC-CoSiM Workshop, Gyuletchitsa 15-18 October 2009 20

RG

Profiling workflow

Compile myprog with -pg

Instrumented executable myprog

Do not interrupt
program execution:

Run myprog : :
gmon.out Is written

at the very end!

gmon.out

gprof myprog gmon.out

Profile

Second IRC-CoSiM Workshop, Gyuletchitsa 15-18 October 2009 21

RG gprof output

® Flat profile

» Total time spent in each function
» Number of calls to each function
» Time per call

» Self times

e Call graph profile
» Time spent in each child function
» Number of calls to each child from the current one
» Total number of calls to each child

® Compiler optimisations and function
Inlining may result in weird output!

Second IRC-CoSiM Workshop, Gyuletchitsa 15-18 October 2009

22

RG> Alternatives to gprof

® Hey, it’s XXI century. We've got Windows,
and Macs, and Java, and stuff!

i -

—y

Second IRC-CoSiM Workshop, Gyuletchitsa 15-18 October 2009

23

RG Sun Studio
® Free C/C++/Fortran IDE from Sun

» Written in Java, of course, thus kind of slow ;)
® Available for Solaris and Linux

® GUI plug-ins that wrap command-line tools
® Project D-Light
» Interface to the D-Trace toolkit

» Omnipotent system wide profiling
» Scripts written in D

» Many Solaris components provide D-Trace hooks

® collect/analyzer
» gprof on steroids
» Can trace threads, synchronisation and MPI calls

Second IRC-CoSiM Workshop, Gyuletchitsa 15-18 October 2009 24

[kC+| Basic performance principles

® Data locality
» Spatial — group related data structures together in
memory, do not scatter them
» Temporal — use variables as soon as possible after their
value Is computed

® Streams are good

» Streaming data is a good candidate for vectorisation
» Streams play nice with prefetching

® Simple data structures
» Use pointers only when necessary
» Pointers confuse code optimisers

® |[t’s all about the loops

Second IRC-CoSiM Workshop, Gyuletchitsa 15-18 October 2009 25

RG Data locality

® CPU cache is copied from/to memory in

“lines” (64 bytes in modern x86)

» Spatial locality maximises the chance that related data
parts are in the same cache line

® Fach CPU has a limited number of very

fast registers

» Temporal locality maximises the chance that variables
stay in CPU registers and not in main memory

Second IRC-CoSiM Workshop, Gyuletchitsa 15-18 October 2009 26

Nested loops

® \When nesting loops make the one with

most iterations the innermost
DO i = 1,10 DO i = 1,100000

qood: DO j = 1,100000 hag: j=1,10
END DO !j END DO !j
END DO !1i END DO !i

® Mind how multidimensional arrays are laid
INn memory (spatial locality!)

DO § = 1,100 DO i = 1,100
DO i = 1,100 DO j = 1,100
good: a(i,j) = ... bad: agi,jD —
END DO !i END DO !
END DO !j END DO !i

Second IRC-CoSiM Workshop, Gyuletchitsa 15-18 October 2009

27

RG] Innermost loops

® Put as much work as possible in iInnermost
loops
® Small innermost loops (2 to 4 steps) can be

unrolled:
DO d =1,3 R(1,num) = ...
R(d,num) = ... R(Z2,num) = ...
END DO R(3,num) = ...

® Most compilers automatically unroll loops
IN higher optimisation levels

e Small loops with no interdependencies can
be vectorised — better don’t unroll by hand

Second IRC-CoSiM Workshop, Gyuletchitsa 15-18 October 2009 28

Conditionals

® Conditionals are enemy to the performance
® Conditional statements inside tight loops
are performance Killers

® Conditionals on global flags inside loops

are insanity
IF (flag) THEN

DO 1 = 1,1000 DO 1 = 1,1000
IF (flag) THEN statements 1
statements 1 END DO
ELSE ELSE
statements 2 DO 1 = 1,1000
END IF statements 2
END DO END DO
END IF

Second IRC-CoSiM Workshop, Gyuletchitsa 15-18 October 2009 29

G Cache trashing

® Simultaneous access to memory blocks
that map on the same cache line

AC:) = B(:) + C(:)

» Causes continuous cache reloads from main memory

» Modern CPUs have highly associative L2 and L3 caches
to prevent most cache trashes

® Artificial padding can help reduce trashing

REAL AC1024)
REAL PADA(16)
REAL B(1024)
REAL PADB(16)
REAL C(1024)

REAL A(1024)
REAL B(1024)
REAL C(1024)

Second IRC-CoSiM Workshop, Gyuletchitsa 15-18 October 2009 30

RG] An “obvious” one

® SKkip unnecessary data initialisation
» No need to clear variables that are assigned to later
» Split loops where variable values are accumulated in
each step

a=0.0

a = 1%*2
DO i = 1,1000 b0 1 = 2,109
a=a+ i**2 a = a + 175
END DO
END DO

® |nitialisation of large arrays on each
computation step can be very time
consuming!

Second IRC-CoSiM Workshop, Gyuletchitsa 15-18 October 2009

31

RG

1.0verview

2.Performance estimation...
3.... and optimisation
4.Simple optimisations
5.Advanced technigues
6.Case study

Second IRC-CoSiM Workshop, Gyuletchitsa 15-18 October 2009 32

[R(Ces BOZA

® Molecular Dynamics code for simulations
of carbon and carbon-metal system
® Brenner’s potential — naive O(N?) alogrithm

® Optimisations
» Linked cells + Verlet neighbour list
» Removed unnecessary initialisations of large arrays
» Reduced the number of conditionals
» Reordered some loops
» Better compiler options
» Better compilers

® Net result: ~40x speed-up

Second IRC-CoSiM Workshop, Gyuletchitsa 15-18 October 2009

33

RG Acknowledgements

The author acknowledges the financial

support of the National Scientific Research
Fund under contract DO-02-136/2008
(IRC-CoSiM project).

Second IRC-CoSiM Workshop, Gyuletchitsa 15-18 October 2009 34

Thank you for your attention
and
have a pleasant dinner time!

Second IRC-CoSiM Workshop, Gyuletchitsa 15-18 October 2009

35

